
© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

© 2021, Amazon Web Services, Inc. or its affiliates.

Chaos Engineering for
Serverless
Architectures

Jason Barto

Principal Solutions Architect, AWS

@ jasbarto

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Outline

• Common Faults

• Fault Injection Techniques

▪ Source Code

▪ Environment

▪ Network

▪ Configuration

• Demonstration

2

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

© 2021, Amazon Web Services, Inc. or its affiliates.

The Nature of Failure
and its simulation

3

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Common Faults

▪ CPU Stress

▪ Memory

▪ Disk Space

▪ Disk Bandwidth

▪ Latency

▪ Bandwidth

▪ Packet loss

▪ Failure to connect

▪ 4XX / 5XX HTTP Response

4

Resource Exhaustion Network Dependency Disruption

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Fault Injection Types

5

Application

Compute Environment

Network

Code Manipulation

Environment Manipulation

Network Manipulation

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Code

Manipulation

Environment

Manipulation

Network

Manipulation

COTS on EC2 No Yes Yes

COTS on

Serverless
No No No

Application on

EC2
Yes Yes Yes

Application on

Serverless
Yes No Yes

Fault Injection Techniques

6

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Code

Manipulation

Environment

Manipulation

Network

Manipulation

COTS on EC2 No Yes Yes

COTS on

Serverless
No No No

Application on

EC2
Yes Yes Yes

Application on

Serverless
Yes No Yes

Fault Injection Techniques

7

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Code

Manipulation

Environment

Manipulation

Network

Manipulation

COTS on EC2 No Yes Yes

COTS on

Serverless
No No No

Application on

EC2
Yes Yes Yes

Application on

Serverless
Yes No Yes

Fault Injection Techniques

8

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Source Code Manipulation

Common Faults

• 4XX / 5XX API Responses

• Disk exhaustion

• Message corruption

• Network Latency

Common Tools

• AWS Java SDK Request Handlers

• Failure Lambda

• AWS Lambda Chaos Injection

9

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Environment Manipulation

Common Faults

• CPU Stress

• Memory exhaustion

• Open file exhaustion

• Disk space exhaustion

• Disk Bandwidth throttling

• Network throttling

Common Tools

• Stress-NG

• fallocate / dd

• Traffic Control

• CPUStres

• TestLimit

10

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Network Manipulation

Common Faults

• TCP Packet Loss

• Bandwidth Limitation

• Network Latency

• No Connectivity

Common Tools

• Security Groups

• Network Access Control Lists

• Network Firewall

• HTTP Proxy

• NAT Instance

11

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Configuration Manipulation

Common Faults

• SQS cannot call AWS Lambda

• Kinesis is not able to fulfill a request
from CloudWatch

Common Tools

• Resource Policies

• IAM Policies

• VPC Attachment

12

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

© 2021, Amazon Web Services, Inc. or its affiliates.

Time to Experiment

13

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

14

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

• Convert JSON to CSV

15

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

• Convert JSON to CSV

• JSON Objects written to
Chaos-Bucket

16

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

• Convert JSON to CSV

• JSON Objects written to
Chaos-Bucket

• Notifications sent via SQS

17

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

• Convert JSON to CSV

• JSON Objects written to
Chaos-Bucket

• Notifications sent via SQS

• Converted CSV Objects
written to Chaos-Bucket

18

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

• Convert JSON to CSV

• JSON Objects written to
Chaos-Bucket

• Notifications sent via SQS

• Converted CSV Objects
written to Chaos-Bucket

• Transform recorded to
DynamoDB

19

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Serverless Data Transformation

• Convert JSON to CSV

• JSON Objects written to
Chaos-Bucket

• Notifications sent via SQS

• Converted CSV Objects
written to Chaos-Bucket

• Transform recorded to
DynamoDB

• Notifications sent via SNS

20

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Service Health Measurements

Service Level Indicators Service Level Objectives

21

% of messages currently being

processed

No more than 80% of messages

should be in flight

% of messages that have been

processed

Between 90 and 100% of messages

have been processed

% of messages that could not be

processed

No more than 5% of messages failed

processing

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Monitoring

22

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Monitoring

23

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Monitoring

24

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Monitoring

25

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Monitoring

26

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

© 2021, Amazon Web Services, Inc. or its affiliates.

Experiment 1 –
Configuration Manipulation

27

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Hypothesis When SQS invocation of Lambda is disrupted the SLO for messages in flight

will not be exceeded.

Fault Simulated Disruption of Lambda control plane

Service Level

Indicators
• % messages in flight, SLO (< 80%)

Method 1. Place system under steady load of 120 documents per minute

2. Set Reserved Concurrency for data processing Lambda function to 0

3. Observe system for 5 minutes

4. Reset Reserved Concurrency limit

5. Wait for steady state to return

Serverless Manipulation Experiment

28

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

29

DEMONSTRATION

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

© 2021, Amazon Web Services, Inc. or its affiliates.

Experiment 2 –
Source Code Manipulation

30

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Hypothesis Denying 50% of the requests to DynamoDB will not cause the system to drop

below 90% successful processing rate.

Fault Simulated • Network disruption between Lambda and DynamodDB

Service Level

Indicators
• % messages complete, SLO (90% < 100%)

Method 1. Have failure-lambda library embedded in Lambda function

2. Apply a steady state load of 120 files per minute

3. Set Parameter Store parameter to configure denying DynamoDB access from 50% of

Lambda invocations

4. Observe system for 5 minutes

5. Reset Parameter Store parameter

6. Wait for steady state to return

Source Code Manipulation Experiment

31

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

32

DEMONSTRATION

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

© 2021, Amazon Web Services, Inc. or its affiliates.

Experiment 3 –
Network Manipulation

33

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Network Architecture

34

VPC

Availability Zone 1

Public subnet

NAT Instance

Private subnet
Route table

Internet gateway

Amazon DynamoDB

Lambda functionElastic network

interface

• Bind Serverless services to VPC

• Use routing tables to direct traffic to a

NAT instance

• NAT instance using iptables, tc, and

HTTP proxy

• Iptables directs HTTP traffic to the

HTTP proxy

• Iptables enables masquerading

• tc (Traffic Control) throttles / delays /

loses TCP packets

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Hypothesis The service will keep % complete above 90% when up to 70% of TCP packets

to DynamoDB are lost from Availability Zone A.

Fault Simulated • Network disruption between Lambda and DynamoDB

Service Level

Indicators
• % messages complete(90% < 100%)

Method 1. Bind the Lambda function to Availability Zone A

2. Deploy a NAT instance with a transparent proxy to filter traffic for DynamoDB

3. Use a route table to direct requests for DynamoDB through the NAT instance

4. Place the system under steady load of 120 files per minute

5. Use Traffic Control (tc) to cause 70% packet loss for traffic to DynamoDB

6. Observe system for 5 minutes

7. Clear packet loss for traffic to DynamoDB

8. Wait for steady state to be achieved

Network Manipulation Experiment

35

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

36

DEMONSTRATION

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Recap

Common Faults

Fault Injection Techniques

▪ Source Code Manipulation

▪ Environment Manipulation

▪ Network Manipulation

▪ Configuration Manipulation

Demonstration

Available Tools

• NAT instance / network proxy

• Traffic Control

• HTTP Proxy

• Failure Lambda library

• AWS Lambda Chaos Injection Library

• Service configuration

37

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Further Reading

38

Paper: Building Mission Critical Financial Services Applications on AWS

Blog post: Failure Modes and Continuous Resilience

medium.com/@adrianco

Blog post: Towards Continuous Resilience

medium.com/@adhorn

Workshop: Resilience Engineering Workshop

resilience.workshop.aws

Workshop: Well Architected Labs – Reliability

wellarchitectedlabs.com/reliability

© 2021, Amazon Web Services, Inc. or its affiliates.

CHAOS ENGINEERING FOR SERVERLESS ARCHITECTURES

Thank you!

© 2021, Amazon Web Services, Inc. or its affiliates.

Jason Barto

Principal Solutions Architect, AWS

@jasbarto

